3 resultados para adrenal disease

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our research team and laboratories have concentrated on two inherited endocrine disorders, congenital adrenal hyperplasia (CAH) and apparent mineralocorticoid excess, in thier investigations of the pathophysiology of adrenal steroid hormone disorders in children. CAH refers to a family of inherited disorders in which defects occur in one of the enzymatic steps required to synthesize cortisol from cholesterol in the adrenal gland. Because of the impaired cortisol secretion, adrenocorticotropic hormone levels rise due to impairment of a negative feedback system, which results in hyperplasia of the adrenal cortex. The majority of cases is due to 21-hydroxylase deficiency (21-OHD). Owing to the blocked enzymatic step, cortisol precursors accumulate in excess and are converted to potent androgens, which are secreted and cause in utero virilization of the affected female fetus genitalia in the classical form of CAH. A mild form of the 21-OHD, termed nonclassical 21-OHD, is the most common autosomal recessive disorder in humans, and occurs in 1/27 Ashkenazic Jews. Mutations in the CYP21 gene have been identified that cause both classical and nonclassical CAH. Apparent mineralocorticoid excess is a potentially fatal genetic disorder causing severe juvenile hypertension, pre- and postnatal growth failure, and low to undetectable levels of potassium, renin, and aldosterone. It is caused by autosomal recessive mutations in the HSD11B2 gene, which result in a deficiency of 11β-hydroxysteroid dehydrogenase type 2. In 1998, we reported a mild form of this disease, which may represent an important cause of low-renin hypertension.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypothalamic–pituitary–adrenal underactivity has been reported in rheumatoid arthritis (RA). This phenomenon has implications with regard to the pathogenesis and treatment of the disease. The present study was designed to evaluate the secretion of the adrenal androgen dehydroepiandrosterone sulfate (DHEAS) and its relation to clinical variables in RA, spondyloarthropathy (Spa), and undifferentiated inflammatory arthritis (UIA). Eighty-seven patients (38 with RA, 29 with Spa, and 20 with UIA) were studied, of whom 54 were women. Only 12 patients (14%) had taken glucocorticoids previously. Age-matched, healthy women (134) and men (149) served as controls. Fasting blood samples were taken for determination of the erythrocyte sedimentation rate (ESR), serum DHEAS and insulin, and plasma glucose. Insulin resistance was estimated by the homeostasis-model assessment (HOMAIR). DHEAS concentrations were significantly decreased in both women and men with inflammatory arthritis (IA) (P < 0.001). In 24 patients (28%), DHEAS levels were below the lower extreme ranges found for controls. Multiple intergroup comparisons revealed similarly decreased concentrations in each disease subset in both women and men. After the ESR, previous glucocorticoid usage, current treatment with nonsteroidal anti-inflammatory drugs, duration of disease and HOMAIR were controlled for, the differences in DHEAS levels between patients and controls were markedly attenuated in women (P = 0.050) and were no longer present in men (P = 0.133). We concluded that low DHEAS concentrations are commonly encountered in IA and, in women, this may not be fully explainable by disease-related parameters. The role of hypoadrenalism in the pathophysiology of IA deserves further elucidation. DHEA replacement may be indicated in many patients with IA, even in those not taking glucocorticoids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work develops and implements a biomathematical statement of how reciprocal connectivity drives stress-adaptive homeostasis in the corticotropic (hypothalamo-pituitary-adrenal) axis. In initial analyses with this interactive construct, we test six specific a priori hypotheses of mechanisms linking circadian (24-h) rhythmicity to pulsatile secretory output. This formulation offers a dynamic framework for later statistical estimation of unobserved in vivo neurohormone secretion and within-axis, dose-responsive interfaces in health and disease. Explication of the core dynamics of the stress-responsive corticotropic axis based on secure physiological precepts should help to unveil new biomedical hypotheses of stressor-specific system failure.